JF : Il est trop nul, le Julien
Julien : fru-fru que j’ai noté ton idiotie concernant Cit+ et CitT ? J’te connais par cœur et tu passes joyeusement par-dessus.
JF : Ca fait des mois qu'il nous sort une liste supposée montrer des pertes pour les bactéries
Julien : Ben oui ! Et tant que c’est ce que les microbiologistes vont découvrir, je le maintiendrai (voir les multiples références) ; un jour tu vas finir par lire, te documenter et comprendre. Tiens, je te donne une autre chance avec des extraits du même article que tu cites et que tu cris victoire.
[j’ai bien dis dans plusieurs interventions que les mutations causaient des « pertes » mais pouvaient être « neutres ». La neutralité d’une mutation ne change rien au débat : la RAA par mutations ne résulte pas d’ajouts de matériel génétique, pas de nouveau gène, pas de nouveau mécanisme, donc, pas d’évolution, rien d’expliquer du point de vue de l’ORIGINE des gènes. Si la question de l'origine des gènes ne vous intéresse pas, c'est ok, je respecte.]
---------------------------------------------
Mutations, on the other hand, can potentially account for the origin of antibiotic resistance within the bacterial world, but involve mutational processes that are contrary to the predictions of evolution.
Instead, such mutations consistently reduce or eliminate the function of transport proteins or porins, protein binding affinities, enzyme activities, the proton motive force, or regulatory control systems. While such mutations can be regarded as “beneficial,” in that they increase the survival rate of bacteria in the presence of the antibiotic, they involve mutational processes that do not provide a genetic mechanism for common “descent with modification.” Also, some “relative fitness” cost is often associated with such mutations, although reversion mutations may eventually recover most, if not all, of this cost for some bacteria. A true biological cost does occur, however, in the loss of pre-existing cellular systems or functions. Such loss of cellular activity cannot legitimately be offered as a genetic means of demonstrating evolution.
As a group, the mutations associated with antibiotic resistance involve the loss or reduction of a pre-existing cellular function/activity, i.e., the target molecule lost an affinity for the antibiotic, the antibiotic transport system was reduced or eliminated, a regulatory system or enzyme activity was reduced or eliminated, etc. (Table I). These are not mutations that can account for the origin of those cellular systems and activities. While these mutations would certainly be “beneficial” for bacterial survival when an antibiotic is present in the environment, this benefit is at the expense of a previously existing function.
Exemples :
Reduction of specific oligopeptide transport activities also leads to spontaneous resistance of several antibiotics, including streptomycin (Kashiwagi et al., 1998). In these examples, resistance occurred
as a result of the loss of a functional component/activity.
Resistance to cephalosporins has been linked to
a dramatic alteration of membrane transport kinetics that is similar to porin-deficient strains (Chevalier et al., 1999).
Actinonin resistance in Staphylococcus aureus results
from mutations that eliminate expression of the fmt gene (Margolis et al., 2000).
[Julien : il faut être con pour penser que la suppression de l'expression d'un gène est, au final, une réduction de l'information génétique et non un ajoût, hein JF ?]
Zwittermicin A resistance in E. coli is associated
with loss of proton motive force (Stabb and Handelsoman, 1998).
For Streptococcus gordonii, penicillin tolerance may involve
loss of regulatory control of the arc operon (Caldelari et al., 2000). And, E. coli can survive the presence of ß-lactams, such as ampicillin, by halting cell division, making the cell less sensitive to the lethal affect of the antibiotic (Miller et al., 2004).
Resistance to other antibiotics, such as kanamycin,
can result from loss or reduction of synthesis of a transport protein (OppA) (Kashiwagi et al., 1998). Ciprofloxacin and imipenem resistance can result, at least in part, from the decreased formation of the outer membrane porin, OmpF (Armand-Lefèvre et al., 2003; Hooper et al., 1987; Yigit et al., 2002). An increase in meropenem and cefepime resistance is also associated with loss of OmpF, and another porin, OmpC (Yigit et al., 2002). And, Enterobacter aerogenes can become resistant to various antibiotics when a mutation dramatically reduces the conductance of a membrane porin (Dé et al., 2001).
-------------------------------
Donc, si au moins vous refusez d'admettre qu'il y a, globalement, "réduction" de l'information génétique ou plus précisément "réduction de l'expression de l'information génétique" et dans d'autres cas, réduction du potentiel réactionnel des enzymes ciblés, pourrez vous au moins admettre la neutralité ?
Ensuite, est-ce que la "neutralité" en terme d'information génétique (et non d'adaptation) est un exemple d'évolution pour vous ?
Ces deux questions sont très simples.