Suivi

Re: la mort qui tombe du ciel


Re: Tant qu'à être dans les bilans énergétiques.. -- Korg
Postée par Sébastien , Jul 19,2000,08:32 Index  Forum

Un objet quelquonque, y compris une balle de fusil, subit l'attration terrestre, c'est-à-dire un accélération de 9.8... m/s^2 .

Si la balle est tirée à la verticale, par exemple, sa vitesse parallèle au sol sera (vitesse initale - perte de vitesse dû au frottement), et sa vitesse 'vers le sol' sera relativement faible. Dans ce cas, la balle fait une trajectoire parabolique.

Si on tire en l'air, deux force s'exerce sur la balle, et ces deux force tendent à ralentir la balle: la gravité et le frottement. `A un certain moment, la balle n'a plus de vitesse et elle recommence sa descente.

Juste avec le frottement à la montée, on sait déjà que la balle ne pourra atteindre le sol avec la même vitesse qu'à la montée. Ce que je veut dire, c'est que en supposant que le frottement à la montée n'est pas négligeable et qu'il l'est à la descente, la balle aura déjà perdu de l'énergie, sous forme de frottement, et elle n'aura pas pu gagné toute l'énergie potentielle pour qu'elle demeure une 'balle académique' (comme dans les exemples mécanique classique du secondaire :-) ), c'est-à-dire pour qu'elle atteingne le sol (la hauteur du bout du canon où elle a été lancée pour être plus précis) à la même vitesse que celle à laquelle elle a été lancé.

Mais le frottement cause un autre problème majeur à la descente. Le frotement dans ce cas est, comme force, appliquée dans la direction opposée à la gravité, contrairement au cas de la montée. La force de frottement est proportionnelle à la vitesse par un facteur qui dépend principalement de la surface et de la masse de la balle. Et donc losrque la balle a atteint une certaine vitesse critique, la force de frottement est égale et opposée à la gravité. C'est-à-dire que lorsque la force de frottement est égale à 9.8... m/s^2, la balle cesse d'accéléré, et continue son chemin à vitesse constante !

Bon tout ça, c'est en théorie. Il est certain que le frottement dissipe une certaine quantité d'énergie, puisque que l'on peut facilement vérifier qu'une balle tirée chauffe. Par conscéquent, il est strictement impossible que la balle atteingne le sol à la même vitesse qu'on lancement. Il s'agirait maintenant de voir à quel point elle peut perdre de l'énergie, et il n'est pas certain que la balle puisse redescendre à vitesse constante, si elle atteint le sol avant d'atteindre sa vitesse critique. Mais je suis absolument persuadé qu'elle peuvent tomber assez vite pour tuer !

En conclusion: Une balle de fusil (et même plus: tout objet) ne peut atteindre le sol à la même vitesse que lorsqu'elle l'a quitté, à cause du frottement.

On sait que ce frottement sera toujours suffisamment significatif, puisque que la machine à mouvement perpétuel n'existe pas.

P.S. une manière simple d'expérimenter une descente à vitesse constante, où la force de frottement est égale et opposée à la gravité, est faire du saut en parachute (ou de regarder quelqu'un en faire...). Un corps humain atteint sa vitesse critque plutôt rapidement étant donné sa grande surface. Même en chute libre, le corps finit par atteindre une vitesse constante. Le parachute augmente la surface de contact (augmente la grandeur de la force de frottement) ce qui a pour fait de réduire la vitesse critique, de sorte que le parachutiste ne se casse pas la gueule.

En fait on pourrait aisément en conclure qu'au delà d'une certaine altitude critique, toute chute d'une altitude plus élévé que l'altitude critique n'est pas plus mortelle ! On pourrait peut-être expliquer toute sorte de 'miracles' de survivant d'écrasement (plus particulièrement des gens projetté hors d'avion en vol qui ne se tue pas).